## Coimisiún na Scrúduithe Stáit State Examinations Commission

## Leaving Certificate Examination, 2011

# Design \& Communication Graphics Ordinary Level Sections B and C (180 marks) 

Friday, 17 June<br>Afternoon, 2.00-5.00

This examination is divided into three sections:
SECTION A (Core-Short Questions)
SECTION B (Core - Long Questions)
SECTION C (Applied Graphics - Long Questions)

|  | - Four questions are presented. |
| :--- | :--- |
| SECTION A | - Answer any three on the accompanying A3 examination paper. |
|  | - All questions in Section A carry $\mathbf{2 0}$ marks each. |

- Three questions are presented.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry $\mathbf{4 5}$ marks each.
- Five questions are presented.

SECTION C - Answer any two (i.e. the options you have studied) on drawing paper.

- All questions in Section C carry $\mathbf{4 5}$ marks each.


## General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections $B$ and $C$.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your Examination number in the box provided on section $A$ and on all other sheets used.


## SECTION B - Core

Answer Any Two questions from this section on drawing paper

B-1. The 3D graphic on the right shows a bus shelter.
Fig. B-1 shows the plan and elevation of a model of the bus shelter.
(a) Draw the given plan.
(b) Make a perspective drawing of the structure given the following:

- The spectator point is 70 mm from corner A
- The picture plane is touching corner $\mathbf{A}$
- The horizon line is 40 mm above the
 ground line.

Scale 1:1


Fig. B-1

B-2. The 3D graphic on the right shows an arrangement of playground equipment consisting of an entrance tunnel leading to a play area, which is square in plan.

Fig. B-2 below shows the plan and elevation of the arrangement.
(a) Draw the given plan and elevation of the structure and show all lines of interpenetration.
(b) Draw an end view of the structure.


Scale 1:1


Fig. B-2

B-3. The 3D graphic on the right shows a model of a fireplace.
Fig. B-3 shows the plan and elevation of the fireplace.
(a) Draw the given plan and elevation.
(b) Draw an auxiliary elevation of the fireplace, projected from the plan, which will include the true shape of surface $\mathbf{A}$.

## Scale 1:1



Fig. B-3

## SECTION C - Applied Graphics

Answer Any Two questions (i.e. the options you have studied) from this section on drawing paper

## Geologic Geometry

C-1. The accompanying map, located on the back page of Section A, shows ground contours at five metre vertical intervals.
(a) On the drawing supplied, draw a vertical section (profile) on the line $\mathbf{A B}$.
(b) The valley to the right of point $\mathbf{A}$ floods during heavy rain. Draw a line on the profile to indicate the surface of the water when it is 8 metres in depth.
(c) $\mathbf{C D}$ is the centreline of a proposed roadway which is level at an altitude of 25 m .

Using side slopes of 1 in 1 for the cuttings, complete the earthworks, on the northern side, necessary to accommodate the roadway.
(Note: The earthworks on the southern side of the roadway have already been completed.)

C-2. The image on the right shows a wire clothes hanger which was bent and then dipped into washing-up liquid, to produce a hyperbolic paraboloid surface film.
Fig. C-2 below shows the plan and elevation of a typical hyperbolic paraboloid surface ABCD.

The outline of the surface is a square in elevation.
(a) Draw the given plan and elevation of the hyperbolic paraboloid surface.
(b) Project an end view of the hyperbolic paraboloid surface.

Scale 1:1


## Surface Geometry

C-3. The 3D graphic on the right shows a design for a referee's whistle.

The plan and elevation of the whistle are shown in Fig. C-3.
(a) Draw the given views.
(b) Draw a one-piece surface development of the whistle.

Scale 1:1


Fig. C-3

## Dynamic Mechanisms

C-4. (a) The graphic on the right shows an enlarged view of the piston and crank mechanism from the engine of a remote control car. Fig. C-4 below shows the line diagram for this mechanism. Crank OA and arm $\mathbf{A C}$ are pin jointed at $\mathbf{A}$. Point $\mathbf{B}$ is located on the $\operatorname{arm} \mathbf{A C}$ as shown.

As the crank $\mathbf{O A}$ rotates in a clockwise direction, for one revolution, $\mathbf{C}$ moves along the vertical axis.

Plot the locus of point $\mathbf{B}$ for this movement.

## Scale 1:1


(b) The graphic on the right shows an enlarged view of the camshaft from such a car engine.

The cam imparts the following motion to the piston:

- $0^{\circ}$ to $150^{\circ}$ Rise 60 mm with uniform velocity
- $150^{\circ}$ to $180^{\circ}$ Dwell
- $180^{\circ}$ to $360^{\circ}$ Fall 60 mm with uniform acceleration and retardation.


Draw the displacement diagram.
Note: It is not necessary to draw the profile of the cam.
Scale 1:1

## Assemblies

C-5. The 3D graphic on the right shows a hand on a brass Door Knocker.

Details of the Door Knocker are given in Fig. C-5 with the parts list tabulated below. A 3D graphic of the individual parts is also shown.

Note: For clarity, some centrelines have been omitted.
Draw the elevation of the assembled Door Knocker.
(Any omitted dimensions may be estimated.)
Scale 1:1


Fig. C-5

| Part | Name | Qty. |
| :---: | :--- | :---: |
| 1 | Door Plate | 1 |
| 2 | Swing Arm | 1 |
| 3 | $6 m m$ Spacer | 2 |
| 4 | M8 Washer | 1 |
| 5 | M8 Nut | 1 |
| 6 | M8 Bolt | 1 |



BLANK PAGE

BLANK PAGE

